
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4583 375

Malware detection using data mining techniques

Abhay pratap singh1, Dr.S.S handa2

M.Tech Student (CSE) from Manav Rachana International University, Faridabad
1

Professor, Computer Science from Manav Rachana International University, Faridabad
2

Abstract: Nowadays, malicious software attacks and threats against data and information security has become a

complex process. The variety and number of these attacks and threats has resulted in providing various type of

defending ways against them, but unfortunately current detection technologies are ineffective to cope with new

techniques of malware designers which use them to escape from anti-malwares. In current research, we present a

combination of static and dynamic methods to accelerate and improve malware detection process and to enable

malware detection systems to detect malware with high precision, in less time and help network security experts to

react well since time detection of security threats has a high importance in dealing with attacks.

Keywords: Malware, Malware Detection, Escape Techniques, Data Mining

1. INTRODUCTION
The Continues growth of malwares, has resulted in

creating enormous threats in information and security points

so that cyber defense centers have high importance in many
countries. Like country boundaries which could be attacked

from different aspects such as contraband and thieves,
virtual space also suffer from these attacks [1].

Figure 1. Ncreased volume of malware from 2003 to 2010.

Experiences have shown that most of these attacks are

from malwares. On time detection of virtual space security

attacks has a significant importance in protecting resources.

In order to detect such malwares, before the advent of

malicious effects, we should employ methods for detecting

good and bad software behaviors to be able to detect which

software is problematic and which ones are not. For this

means, we should investigate both type of software in order

to not face with a problem in detection process [2].
Figure 1 indicates increased volume of malware from

2003 to 2010 which has reported by Panda laboratory and it

is predicted that this increasing trend of attack would

continue in the next few years with a much faster speed so

that the mean number of new threats per day exceeds from

55000 attacks per day. These attack are usually done to

computer networks of sensitive agencies such as security

entities, banks, economic centers, information storage centers,

computer networks and etc.

2. MALWARE DEFINITION AND ANALYSIS
Computer applications which have a destructive content and
apply to system from invader, are called malware and the
systems which apply on it is called victim system [3]. The
malware word is assigned to virus, worm, Trojan and any
other program which is created for distractive goals and
abusing of users’ privacy.

But what is the difference between a virus and a worm?
What is the difference between these two and Trojan? Do
antivirus programs apply against worms and Trojans or only

against the viruses? All of these questions originate from one
source and it’s the complex and complicated world of
destructive codes [1].

Enormous numbers of available destructive codes have

made their classification difficult. Generally, malwares are
classified into several kind based on behavior, attack method:

For example, some kind of malware classification is as follow:
virus, worm, spyware, rootkit, each one has a special behavior

which are described below:

2.1. Virus

A code which includes itself to other programs such as
operating systems and needs to run within the host program [4].

2.2. Worm

Malwares which transform themselves from one system to

other using self-publishing in a network which include some
connected computers. Generally, viruses try to publish

themselves via a program, while worms unlike viruses put
themselves only in one computer, and try to pollute a

computer network [1].

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4583 376

2.3. Trojan Horse
A type of malware that appears in the form of pieces of

software code and are intended for useful purposes. It runs
up desired functions for users but hiddenly runs a series of
actions beside it. It even can destroy the integration of a
system [3].
2.4. Logic Bomb

A Logic bomb does not publish itself, but is installed on a
system and waits until an external event such as data input,
reaches to a special date, creating, deleting or even modify a
special file leading to damaging the system [2].

2.5. Backdoors

Backdoor is a kind of software which enters the computer
system without authorization and achieves its goals without
normal entering to system [1].

2.6. Spy

A term for a collection of software that collects user
personal information such as most visited pages, email
addresses, keys pressed by the user [5].

2.7. Rootkit

Rootkit is a malware that has the ability to hide itself and

its activities on the target system. Owner of rootkit is

capable to run file and settings on the victim system without

the owner of system being aware of it. It usually attaches

itself to original files of operating system core and run with

it.

Rootkits try targeting original structures and programs of

the operating system and the integrity of their contents in

order to change performance trend and the result of their

running. Rootkits can hide themselves from users through

the following methods:
a) Rootkit integrate its codes with operating system codes

which are at low-levels and accordingly can access all
system requests such as reading files, running processes
and etc.

b) Rootkit transfers its malicious codes into healthy

processes and by doing so, it can use the memory that
and do its malicious programs [6].

The base of traditional and usual methods to detect

malware is using signature in which part of malware code is

hold as the signature in the database and malware detection

is carried out using signatures available in the database.

Due to the failure of old methods in detecting new and

unrecognized malwares or polymorphic malwares in

recent years, researchers have tried to present more

reliable methods for malware detection using unchanging

characteristics of the malwares [6].

Nowadays, signature for antiviruses is a tool which is
created manually. Before writing a signature, the analyst
should identify how to deal with the unknown sample as
a threat for users.

The process of searching malware is called analyzing.
The more analysis tool and techniques, the more attackers
try in using hidden making techniques and generating
dynamic hidden codes from user’s perspective. Analysts

use two type of analysis to detect malware: static analysis
and Dynamic analysis.

2.8. Static Analysis

Software analysis without execution, is called static
analysis which without running the program, investigates
the code and can detect malicious code and put it in one of
the available groups based on different learning methods
[7].

Since such methods deal with real codes, they can be
used in the conditions in which there are polymorphic

malwares. One of the problems of static analysis is that
source code of the program isn’t usually available which
this reduces using of static analysis techniques that results
in analyzing their binary codes which in turn is very

complicated.

In the static method, binary codes are checked and
viruses are detected based on binary codes. In fact this is
the key part of static method. It is worth mentioning that
extracting binary codes is a relatively complex work [5].

3. DYNAMIC ANALYSIS
To overcome these shortcomings, several dynamic

detection methods have been proposed. Unlike the static
method which relies on malware binary codes, there is a
completely different method without using the codes but
according to the runtime behavior [3].

Although promising, but unfortunately this method is too
slow as real time detectors on the end host and often need
virtual machine technology [1]. In fact, program analyzing,

while it is running, is called dynamic analysis which also
referred to as behaviors analyzing and include software
running and watching its behavior, system interaction and
its effects on host system [6]. Dynamic analysis method
need to run polluted files in a virtual environment like a

virtual machine, a simulator, sand box, etc to analyze it in
virtual environment [2].

To analyze programs by dynamic methods, different
techniques have been applied.

So far which the most common method and techniques
include [8]:

Checking recalled functions.

Following the flow of

information.

Following the order of running functions.

4. MALWARE DETECTION TECHNIQUES
There are different methods to detect malwares but

considering that malware have become more complicated
using hidden techniques; we need more advanced methods
to detect them.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4583 377

Generally, common malware detection techniques are
divided into two categories:

Detection methods based on
signature Detection methods based
on behavior

4.1. Signature- Based Detection

The main goal of this method is to extract the unique
bytes sequence of codes as the signature. Searching for a
signature in the suspicious files is a part of the task [8].

Most of today’s commercial anti-malwares use a set of
signatures to detect malicious programs which these
suspicious codes are compared with a unique sequence of
structures of programs or bytes [7].

If the signature is not available in the dataset, it means
that the file is begin other than malicious [9].

The main problem of such approaches is that the anti-
malwares experts should wait until new malware harm
several computers, order to define a signature for it [8].

Usage of polymorphic model in cryptography has led
to neutralize the signature based method which makes
these polymorphic malwares undetectable through this
method.

In order to overcome these problems, the behavior
based method is used.

4.2. Behavior-Based Detection

Behavioral parameters include many factors such as
source or destination of malware, kinds of attachments
and other statistical properties [8]. Dynamic behaviors
are directly used in evaluating the damage to the system

and also help us to detect and classify new malwares.
Malware clustering based on dynamic analysis is based
on running the malware in a real controlled environment
[7].

4.3. Comparison between Detection Methods

Given the polymorphism and transformation
techniques which currently are used by malware
designers, the signature based methods are inherently
prone to errors [9].

Signature based methods are unable to detect more

complex malwares and can hardly detect malwares which

use polymorphism and transformation methods. In

addition, one of the limitations of signature-based detection

methods is that they require human knowledge to update

the signature database by new signatures [8].

Furthermore, a number of research studies have shown
that some of polymorphic software’s writers can easily
defeat signature based method by obfuscation methods
[9].

Given the mentioned problems, it is better to use
analysis method at runtime. However, the behavior based
methods also have a major problem since this method is
to slow as the real-time detectors on the final host and
they often need virtual machine technologies.

5. METHODS USED FOR ESCAPING FROM

ANTI MALWARES
Since signature-based antivirus systems try to find viral

codes by searching for a character sequence string in the
executive file, virus programmers apply various techniques
to hide malwares and such sequences some of which are
described below.

5.1. Cryptography

Virus code encryption by different encryption key would
result in creating different texts.

As a result, it could be ensured that signature based
scanners can’t detect this virus. To run the virus, these texts
should initially be decoded.

Detailed analysis of decoding algorithm is only possible
if we know these keys [10].

5.2. Polymorphic Generator

Malwares use a polymorphic generator to change codes
while the original algorithm remains intact. However, we
should know that, at the end, all samples generated from a
malware do the same work.

This is performed by combining many commands that
have no impact on the execution mode and its effects. For

example, each copy of the virus may be neutral group of
commands such as increasing and then decreasing over the
same operand or left ship and then right shift or push a
value and pop it again.

All these methods will effectively hide virus codes from
the signature based anti viruses [10].

5.3. Obfuscation

In malwares there are different evasion approaches to
evade the malcodes from external anti malware scanners
such as Code obfuscation, decrypting encryption and etc.

In code obfuscation the main goal is to hide the
underlying logic of the program so as to prevent the others
from having any related knowledge of the code[8].
The malicious code remains incomprehensible and all its
harmful functionality whenever activated. When we apply
some obfuscation transformations to a code, then it results
in a kind of self-decrypting encryption.

But Packing refers to encrypt or compress the executable
file. In Packing, original code remains hidden till the
runtime or the unpacking process of executable codes
which results in the immunity of code for static analysis
[7].

Packed malware codes can be treated as subset of
obfuscated codes which are compressed and cannot be
analyzed so, consequently unpacking phase is necessary to
reveal the overall semantic of the code [9].

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4583 378

6. PROBLEM DEFINITION
One the most important and most serious problems

which the internet world is faced with is the existence of
malwares like.

According to studies conducted in this field, we have
concluded that 80 percent of damages to systems have
been from malwares and only 20 percent of it has been
from other factors [9].

However, unfortunately, most of the works has been on
the 20% and the malwares have received less attention
and thus we're facing many security problems every day
[5].

In the early days of virus emergence, there were only
static and simple viruses in the world [3].

Therefore, simple signature based methods were able
to overcome them. But these methods were only useful as
long as there weren't so many variations in the types of
malwares and malwares writers didn't use obfuscation
techniques to sophisticate them [5].

However, rapid developments in malwares activities
convinced researchers to explore new methods, so that

after some time, researchers were forced to use data-

mining methods to detect malwares by employing data
mining, they could add a lot of malware to anti-malware

and hence they didn't have to investigate all malwares,

because checking all of them require enormous time and
cost [2].

One of such works was a method called n-grams. At
that time, Geraldn et al. [3] developed n-grams analysis
method to detect boot sector viruses using neural
networks.

The base of n-grams detection method was the
occurrence frequencies in the benign and malicious
programs [3].

After that, Hofmeyr [10] used a simple sequence of
system calls as a guide to evaluate malicious codes. This
API CALLs sequence showed the hidden dependencies
between code sequences.

Thereafter, Shultz, al. [7] tried to use the name of

DLLs as a useful feature in the file categorization.

However, in the recent work by Ye [7], a system (IMDS)
was generated in which the system calls pattern has been

used. Then data mining process has been applied on these
patterns. The study includes 12214 healthy files and

17366 malicious files which they have only used 200

files to test the system [7].

Although the accuracy and learning rate of this method
is relatively good, but there is a fundamental problem that
is Unbalancing of the test data versus the balancing of
learning data.

What we do in this study consists of a very large data
set which involve various types of bengin and malicious

softwares which generally, the number of extracted calls

is about 5000 different features of 420 different files from

890 libraries which includes different types of malwares
such as Trojan, Backdoor, Worm, Exploit, Flooder, Sniffer,

Spoofer and viruses.

7. RESEARCH METHODOLOGY
This research has been performed by some basic steps:

data collection
data processing

analysis of results
In the following, we will discuss each of these steps.

7.1. Data Collection

In order to collect data related to malwares. We
downloaded some malicious files form offensive
computing [11].

Each sample of this set provides us its executive’s code.
These codes are used to learn the proposed model. In order
to evaluate and test, a set of 3131 collected malware were
tested which more than 90% of them include rootkits.

We selected this malwares set because in this study, our
goal is detection rates of malwares especially rootkits.

7.2. Data Processing and Preparation

In this section, we deal with data processing using 3
reverse engineering tools namely: HDasm [12], Ida pro
[13] and W32dsm89 [14] as well as Peid anti-packing tool
[15].

First we process the Peid tool (which is the malware
executive file) but with the understanding that the file has
been packed by Packing tool. Otherwise, there is no need to
apply this tool on it.

In fact by unpacking task, the packing task will be
removed if it has been applied on it because otherwise, the
file isn’t executable by reverse engineering tool and thus
we can't see the called system functions in it.

Afterwards, we give the file as input to three above-

mentioned disassembler and they get the assembly code of

these fields and return the called system functions list from

these assembly codes. Then we save the list as an Xml file.

Later, we apply our algorithm on this stored file to detect

whether it is a malware or not and finally we obtain our

success rate in detecting malwares using Weka data-minig

tool.

7.3. Analysis of Results

Malwares of the same category usually have the
samegeneral patterns, for example a number of system
functions names are common in all members of this family.

We aim to analyze and detect malwares by examining
the shared pattern using machine learning techniques
among malwares.
In fact, we want to use so called Api calls in malware to

In fact by unpacking task, the packing task will be removed
if it has been applied on it because otherwise, the file isn’t
executable by reverse engineering tool and thus we can't see

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4583 379

the called system functions in it.
Afterwards, we give the file as input to three above-

mentioned disassembler and they get the assembly code of

these fields and return the called system functions list from

these assembly codes. Then we save the list as an Xml file.

Later, we apply our algorithm on this stored file to detect

whether it is a malware or not and finally we obtain our

success rate in detecting malwares using Weka data-minig

tool.

7.3. Analysis of Results

Malwares of the same category usually have the
samegeneral patterns, for example a number of system
functions names are common in all members of this family.

We aim to analyze and detect malwares by examining the
shared pattern using machine learning techniques among
malwares.

In fact, we want to use so called Api calls in malware to

overcome the limitations of traditional signature based
methods and to cope with techniques used by malwares
writers as well as to increase malware detection rate.

This method, which is based on called system functions in
malware executive code, uses reverse engineering tool and

monitoring tool for static and dynamic analysis,
respectively. This means, that we obtain their assembly code

by disassembling them and then extract called system
function in it and obtain the API CALLs list of malware

executive file by monitoring the file using monitoring tool.

Finally, with respect to the shared sequence of maleware
which is common among them and could be used to detect
and identify them as the signature, we deal with the
detection of malwares.

The advantages of this method include its high success
rate in malwares detection because it is directly in contact

with malware binary codes and also there is no need to run
them and we can understand whether it is a malware or not

only using their code and obtaining the shared sequence of
called system functions.

Furthermore, we apply the prepared algorithm on the log
file of each file to obtain our database.

After that, we transform the information of this database

to a data mining tool (here we used Weka tool) to obtain the
success rate of detection task.

Figure 2 shows a graph of data mining operation results

using Weka tool on database. As shown above, the success
rate of this method in rootkit detection is over than 97%

which is a remarkable rate.

Figure 2. Success rate of our method in rootkit detection.

8. DISCUSSION AND CONCLUSION

Malwares are becoming widespread and more complex
every day. As examples of their complexity, we can note the

need of using polymorphism techniques, transformation and
encryption, The traditional methods such as matching some
code string of malwares signatures do not have enough
efficiency.

However, there are also some problems in dynamic methods
which their slowness is the most important one.

This is why we need a more intelligent detection method.

This type of detection (which is based on static method) is
based on called system functions in each executive code of the
malware and its goal is to detect versions of malware which
haven't seen yet or are a new version of old malware families.

REFERENCES
[1] Ravi, C & Manoharan, R. Malware Detection using Windows

Api Sequence and Machine Learning. International Journal of
Computer Application, Vol.43, No.17, 2012.

[2] Ravi, C & Chetia, G. Malware Threats And Mitigation
Strategies: A Survey, Journal of Theoretical and Applied
Information Technology, Vol. 29, No. 2, pp. 69-73, 2011.

[3] Egele, M. S, A Survey on Automated Dynamic Malware-
Analysis. ACM Computing Surveys, Vol. 44, No. 2, 2012.

[4] Herath, H. M. P. S., & Wijayanayake, W. M. J. I. Computer
Misuse in the Workplace. Journal of Business Continuity &
Emergency Planning, Vol.3, No.3, P.P 259–270, 2009.

[5] Mathur, K., and Saroj H. A Survey on Techniques in Detection
and Analyzing Malware Executables. International Journal of
Advanced Research in Computer Science and Software
Engineering, Vol. 44, No. 2, 2012.

[6] Doherty, N. F., Anastasakis, L., & Fulford, H, The Information
Security Policy Unpacked: A Critical Study of the Content of
University Policies. International Journal of Information
Management, Vol.29, No.6, pp. 449–457, 2009.

[7] G. Tahan, L.R.Y. Automatic Malware Detection Using
Common Segment Analysis and Meta-Features. Journal of
Machine Learning Research, 13l, pp. 949-979, 2012.

[8] I. Gurrutxaga , Evaluation of Malware clustering based on its
dynamic behaviour. Seventh Australasian Data Mining
conference, Australia, pp. 163–170, 2008.

[9] Rieck. K, Willems.T, D¨ussel. P and Laskov. p, Learning and
classification of malware behavior, 5th international conference
on Detection of Intrusions and Malware, and Vulnerability
Assessment. Berlin, Heidelberg: Springer-Verlag, pp. 108–125,
2008.

[10] Patel, S. C., Graham, J. H., & Ralston, P. A, Qualitatively
Assessing the Vulnerability of Critical Information Systems: A
New Method for Evaluating Security Eenhancements.

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4583 380

International Journal of Information Management, Vol.28,
pp. 483–491, 2008.

[11] http:// www.offensivecomputing.com

[12] http://hdasm.software.informer.com

[13] www.hex-rays.com

[14] processchecker.com/file/W32dsm89.exe.html

[15] https://boveda.banamex.com.mx/englishdir/ayudas/masinfoah

nlab.htm

